Infiltration/Inflow (I/I) Reduction Projects

King County, Washington

E & P Subcommittee Meeting July 16, 2008

Purpose & Feedback

Meeting Purpose

- Inform the E & P Subcommittee about the Status of I/I Reduction Efforts
 - Development of Rehabilitation Costs
 - Methodology of I/I Allocation
 - Development of Initial Rehabilitation Scenarios
 - Analysis Results To-Date
- Respond to Questions
- Obtain Feedback from the E & P Subcommittee

E & P Subcommittee Needed Feedback

- Confirm Methodology Process and Approach
- Provide Input on Initial Rehabilitation Scenario
 Development and Feedback on Process and Timeline to Choose Final Projects

Project Timeline

Regional Infiltration/Inflow Program Milestones

2007-2008

Predesign feasibility analysis and sewer system evaluation surveys (SSES), select 2-3 initial I/I reduction projects.

2009

Final Design of initial I/I reduction projects.
Obtain right-of-entry agreements from property owners.

2010-2012

Construction of initial I/I reduction projects.

2013

Review of project results to determine future I/I reduction projects. King County Executive reviews and submits recommendations to County Council.

Implement regional program

Purpose of Initial I/I Projects

- To Demonstrate & Test the Cost-Effectiveness of I/I Removal on Large Scale
- To Test Planning Assumptions for Use in Future I/I Reduction Planning
- To Learn More from Working on Private Property
- To Provide Models for Successful Future Projects
- To Test Standards, Policies & Procedures

Recap of April E&P Meeting

- General SSES Results
 - CCTV Revealed Moderate Number of Defects in Mains, Laterals and Side Sewers
 - Allocation of I/I Appears to be Uniform Across Basins
- Renton Basin Following Separate Track City Implementation in 2009
- Skyway Revisions
 - Revised Project Requirements, Timing and Capital Costs for Bryn Mawr Tube Storage
 - Basin BLS002 Included For Evaluation
- Eastgate and Issaquah Basins Present Difficult Rehabilitation Challenges

Development of Unit Costs

- Considered Difficulty of Rehabilitation in Each of the Project Areas
- Focuses on Private Property Rehabilitation
 - CCTV Inconclusive on Specific Sources of I/I
 - Flow Monitoring Suggests Rapid Response Consistent with Private Property I/I
 - Consistent with Pilot Projects; Where 70% to 80% Reductions
 Achieved
- Focuses on Pipe Bursting
 - Proven Technology
 - Contractor Capability to Complete Large Volumes of Work

Project Area Field Conditions Easy Rehabilitation

- Low to Moderate Relief
- Direct Side Sewer Routing
- Easy Access to Main and Building Point of Connection
- Typical Restoration

Project Area Field Conditions Medium Rehabilitation

- Moderate to Steep Relief
- Likelihood of Multiple Bends
- Challenging
 Access to
 Building Point of
 Connection
- Medium Value Restoration

Project Area Field Conditions Difficult Rehabilitation

- Steep to Extreme Relief
- Shared Side Sewers w/ Multiple Bends
- Challenging Access Building Point of Connection
- Constructed Access to Main Point of Connection
- High Value
 Restoration and
 Larger Disturbance
 Areas

Rehabilitation Difficulty Allocation

Eastgate

- Easy 32%
- Medium 31%
- Difficult 37%

Issaquah

- Easy 30%
- Medium 36%
- Difficult 34%

Skyway

- Easy 61%
- Medium 25%
- Difficult 14%

Development of Unit Costs

- Considered Difficulty of Rehabilitation in Each of the Project Areas
- Focuses on Private Property Rehabilitation
 - CCTV Inconclusive on Specific Sources of I/I
 - Flow Monitoring Suggests Rapid Response Consistent with Private Property I/I
 - Consistent with Pilot Projects; Where 70% to 80% Reductions
 Achieved
- Focuses on Pipe Bursting
 - Proven Technology
 - Contractor Capability to Complete Large Volumes of Work

Rehabilitation Unit Costs

Final Unit Costs from Benefit/Cost Analysis					
	UNIT COST	UNITS			
Side Sewer Pipe Bursting (easy)	\$3,500	EA			
Side Sewer Pipe Bursting (medium)	\$3,500	EA			
Side Sewer Pipe Bursting (difficult)	\$3,500	EA			
Lateral/Side Sewer Pipe Bursting (easy)	\$6,800	EA			
Lateral/Side Sewer Pipe Bursting (medium)	\$6,800	EA			
Lateral/Side Sewer Pipe Bursting (difficult)	\$6,800	EA			
Direct Disconnects	\$3,000	EA			

Skyway Unit Costs		
	UNIT COST	UNITS
Side Sewer Pipe Bursting (easy)	\$3,310	EA
Side Sewer Pipe Bursting (medium)	\$5,380	EA
Side Sewer Pipe Bursting (difficult)	\$6,600	EA
Lateral/Side Sewer Pipe Bursting (easy)	\$7,295	EA
Lateral/Side Sewer Pipe Bursting (medium)	\$8,515	EA
Lateral/Side Sewer Pipe Bursting (difficult)	\$11,220	EA
Direct Disconnects	\$3,000	EA

Issaquah/Bellevue Unit Costs						
	UNIT COST	UNITS				
Side Sewer Pipe Bursting (easy)	\$8,052	EA				
Side Sewer Pipe Bursting (medium)	\$9,047	EA				
Side Sewer Pipe Bursting (difficult)	\$16,445	EA				
Lateral/Side Sewer Pipe Bursting (easy)	\$9,995	EA				
Lateral/Side Sewer Pipe Bursting (medium)	\$11,995	EA				
Lateral/Side Sewer Pipe Bursting (difficult)	\$16,995	EA				
Direct Disconnects	\$3,000	EA				

Methodology for Development of Alternatives

- Spreadsheet Tool Developed for All Project Areas
 - Incorporated Results of CCTV Data
 - Basin Characteristics Recorded Including Number of Properties and 20-Yr Peak I/I
 - Quantity of Direct Inflow Estimated
 - Remaining I/I Allocated Across Basin
 - Rehabilitation Scenario Developed for Basin
 - I/I Reduction for Scenario Estimated for a Range of Removal Effectiveness
 - BEL031-D Example

Basin Characteristics

Summary of I/I Removal - I/I Reduction

Description	Source	Quantity	Units
General			
Projected 20-year I/I	King County	1.31	MGD
Assumed inflow estimate	Estimated	0.063	MGD
Remaining Basin I/I, (I/I minus inflow)		1.25	MGD
Acres	King County	81.7	ac
I/I per acre		15,269	gpad
Number of properties		213	
Total Quantities in Basin			
Total length of mainlines	CCTV Inspection	14,475	LF
Total number of laterals	Assume one lateral per property.	213	
Total number of side sewers	Assume one side sewer per lateral.	213	
Total number of lateral/side sewers	Assume one side sewer per lateral.	213	
Total number of manholes	GIS	94	
Total number of direct disconnects	Smoke test results	2	

Rehabilitation Scenario

Summary of I/I Removal - Cost Estimates

Description		Quantity	Unit	Ur	nit Cost	ī	Total Cost
Side Sewer Pipe Bursting (easy)		0	EA	\$	8,052	\$	-
Side Sewer Pipe Bursting (medium)		0	EA	\$	9,047	\$	-
Side Sewer Pipe Bursting (difficult)		0	EA	\$	16,445	\$	-
Lateral/Side Sewer Pipe Bursting (easy)		82	EA	\$	9,995	\$	819,590
Lateral/Side Sewer Pipe Bursting (medium)		25	EA	\$	11,995	\$	299,875
Lateral/Side Sewer Pipe Bursting (difficult)		75	EA	\$	16,995	\$	1,274,625
Direct Disconnects		2	EA	\$	3,000	\$	6,000
				5	Subtotal	•	2,400,090
			Sales Tax		9.0%	\$	216,008
			Construction	n S	Subtotal	\$	2,616,098
Allied Cost 53.0% \$						1,386,532	
Project Cost \$						4,002,630	
Contingency 30.0% \$					\$	1,200,789	
	То	tal Estimated Proje	ect Cost (20	07 I	Dollars)	\$	5,203,000
Total Quantities in Basin - Rehabilitated							
Total number of side sewers - rehabilitated						0	
Total number of lateral/side sewers - rehabilitated					18	32	
Total number of performed disconnections						2	
Percent Rehabilitated in Basin							
Side sewers rehabilitated					0'	%	
Lateral/side sewers rehabilitated					85	%	
Performed disconnections					100	%	

I/I Allocation and Reduction

I/I Allocation in Basin (Private Properties)					
Percentage of private properties in basin over which I/I (I/I minus inflow) is to be apportioned	Assumed.	90%			
I/I allocation per property (no degradation)		4.5	gpm		
Number of properties to be rehabilitated		182			
Private property estimated I/I reduction assuming 60% reduction (no degradation)		0.71	MGD		
Private property estimated I/I reduction assuming 75% reduction (no degradation)		0.89	MGD		
I/I Removal in Basin					
I/I removal due to performed disconnections (100% reduction assumed)		0.06	MGD		
I/I removal due to private property rehabilitations (60% I/I reduction assumed per fixed property)		0.71	MGD		
I/I removal due to private property rehabilitations (75% reduction assumed per fixed property)		0.89	MGD		
Summary: I/I Removal (60% I/I Reduction Assumed for Private Properties; No Degradation)					
	Total I/I Removal	0.77	MGD		
Minimum Remaining I/I			MGD		
Minimum Remaining I/I			gpad		
Summary: I/I Removal (75% I/I Reduction Assumed for Private Properties; No Degradation)					
	Total I/I Removal	0.95	MGD		
	Minimum Remaining I/I	0.4	MGD		
	Minimum Remaining I/I	4,397	gpad		

Current Scenarios

- Over 50 Scenario Alternatives Evaluated
- Scenarios Included Evaluation of Single Basins, Multiple Basins, and Work in Multiple Project Areas
- Scenario Example BEL/ISS-BH and BEL/ISS-BL
 - Includes Rehabilitation in One Eastgate Basin and One Issaquah Basin
 - Rehabilitation of 107 Properties in Eastgate and 113 Properties in Issaquah for a Total of 220 Properties
 - Estimated Construction Cost of \$3.41 M; Estimated Project Cost of \$5.23 M
 - Estimated Removal of 0.85 to 1.04 MGD Peak I/I
 - Reduces Eastgate Storage by 260K 320k Gal; Reduces Issaquah Tube Storage 370k - 450k Gal
 - CSI Project Cost Savings of \$5.60 M to \$6.97 M
 - Resulting Cost/Benefit Ratio of 1.07 1.33

Current Scenarios

- Most Promising Basins for Rehabilitation
 - BEL031
 - ISS003
 - BLS002 & BLS003
- Most Cost-Effective Scenarios

```
- BEL-I B/C Ratio = 1.17 - 0.97
```

$$-$$
 BEL-J B/C Ratio = $1.13 - 0.93$

$$-$$
 BEL-K B/C Ratio = 1.50 $-$ 1.24

$$- ISS-E B/C Ratio = 1.18 - 0.93$$

- ISS-F B/C Ratio =
$$1.23 - 0.96$$

$$- ISS-G B/C Ratio = 1.36 - 1.08$$

- BEL/ISS-B B/C Ratio =
$$1.33 - 1.07$$

Current Scenarios

- Skyway Scenarios
 - Rehabilitation Does Not Appear Cost-Effective Despite High I/I Allocation
 - Relative to Other Project Areas, High I/I
 Removal Quantity Required to Eliminate Bryn
 Mawr Tube Storage
 - Hydrograph Characteristics, Low Storage
 Volume and High Property Acquisition Costs
 are Factors

E&P Subcommittee Input and Next Steps

- Does the E&P Subcommittee have comments or questions regarding the presented evaluation methodology and approach
- Does the E&P Subcommittee have input on additional information that should be evaluated
- What input does the E&P Subcommittee have on selection of final projects
 - Additional evaluation required to make decision
 - Process of selection
 - Timing/Dates for next E&P Subcommittee and MWPAAC meetings
 - Project Selection September 3, 2008
 - MWPAAC Approval September 24, 2008